
Open-Source 3D Audio Sequencer for Sound and
Musical Recognition in MaxMSP using HOA

Library and Jitter

Justin Kerobo
School of Computer Science and Music

Earlham College
Richmond, Indiana 47374

Email: jakerobo15@earlham.edu

Abstract—A musician, artist, composer, or even scientist has
many needs when it comes to the sound space, which is one of the
first dimensions of the contemporary musical and sonal thought.
There are many ways to affect the virtual sonal environment with
hardware and software. Of the various tools in the electroacoustic
domain, this focuses on spatialization. Using this, an artist can
create new music, a composer can change sound directly, and
a musician can edit their sound in real-time. HOA Library is
one of the tools that has allowed for musicians and composers
to synthesize, transform and render sound spaces in a creative
way. However, due to conventional means of spatialization, HOA
Library is widely overlooked. Therefore, I developed “SonoSpatial
Walk,” a 3D audio sequencer in Max that uses MIDI, Jitter, and
HOA Library. It is dependent on nothing but open-source, cross-
platform libraries. I use HOA Library for the sound spatialization
by getting the values of the environment from the Jitter and
OpenGL matrix that create the objects, space, and scene by
values. The program also allows for the saving of sounds and
objects in the space, along with reverberation values of the room
that are editable due to HOA Library. A user can control the
room reverberation, enable keyboard control, full-screen, non-
movement commands, and navigation commands in the sound
space with MIDI control. Finally, I add an interface by using
Java which allowed for the traversal of the sound space with a
keyboard and mouse to be able to trigger objects.

Keywords—MIDI, OpenGL, Graphics, MaxMSP, HOA Library,
Music Technology, Jitter, Computer Music.

I. INTRODUCTION

The idea of a 3D audio sequencer in Max in a interac-
tive virtual environment made Jitter and OpenGL for sound
manipulation is nothing new, but rare. In addition, it relies
on the idea of a spatial processor or spatializer. Veritably,
as early as the launch of Spat [4] in 1995, the solution has
been present, but the libraries are not open-source which
makes it difficult to access. Regardless, the area of audio
sequence can be useful for computer music research and still
can be developed. While there have been many examples
using other graphics engines and spatialization toolkits, there
has yet to be a 3D audio sequencer that is powered by a
spatial processor powerful enough to allow for rendering sound
fields, and available as an open-source library. HOA Library,
which launched in 2012, is a spatial processor that addresses
this problem, with the CICM at the University of Paris 81

1http://cicm.mshparisnord.org/

community making open-source development for spatialization
possible. The spatialization techniques of HOA Library, in
particular, provide a direct way to connect applications for
the 3D audio sequencer to function. Additionally, with a later
update, I believe the software, HOA Library (v2.2), paves
the way forward for development into this area of research.
HOA Library (v.2.2) brings spatial processing power through
Ambisonics that had previously been not available as an open-
source library. It allows for improved spatialization, within a
space, virtual or physical, and is easily accessible.

HOA Library2 is available for three languages/mediums;
MaxMSP3, PureData4, and VST5. With PureData, it is open-
source and has a broad user base. The documentation in
PureData is difficult to understand for the beginner computer
music developer.6 With VST, it is available in a lot of Dig-
ital Audio Workstations (DAW), but implementation within
that environment would not allow visualization, and therefore
would not be a 3D audio sequencer. With MaxMSP, video
tutorials7 exist that ease the learning curve, which is why it
was chosen.

Despite the existence of these resources, however, the
learning curve is still often an issue for new developers.8 In
addition, the rarity of 3D audio sequencers and the lack of
open-source offerings make the computer music research in
this area quite limited, and could also be improved upon by
this application. Therefore, in the next section, I will highlight
and compare two 3D audio sequencers made in Max, and detail
the benefits and drawbacks of each system. Afterward, I will
propose and create a new 3D audio sequencer in Max using
HOA Library (v2.2) for sound spatialization by getting the val-
ues of the environment from the Jitter and OpenGL matrix that
create the objects, space, and scene by values. Furthermore, I
use MIDI and Java to control reverberation, enable keyboard
control, full-screen, non-movement commands, and navigation
commands. Finally, I test the performance of the system by
measuring the sound spatialization to get the finite impulse

2http://hoalibrary.mshparisnord.fr/en
3https://cycling74.com/products/max/
4http://puredata.info
5Virtual Studio Technology
6http://puredata.info/docs/manuals/pd/x2.htm
7https://cycling74.com/tutorials/page/1
8http://www.paulschuette.com/wp-content/uploads/2013/01/DEMYSTIFYING-

MAXMSP.pdf



response (FIR) frequency response by using the buffir∼ object
in Max to convolve an input signal with samples from an input
buffer.

II. PREVIOUS RESEARCH

A. Other Software

In 2014, Vic Hug used Jitter and OpenGL to create
SoundStroll9, a virtual landscape in Max while making IR-
CAM’s Spat10 and HOA Library (v2.0) the spatial driver. [3]
The Spat implementation works, but the HOA Library (v2.0)
implementation is “half broken or badly programmed,” and as
a result is not usable. [3] Additional control of the 3D audio
sequencer comes from Java to map keys to control inside the
world has been implemented as well. The loading and saving
of sounds are also possible by the saving text and Jitter files.
While object generation is created using Jitter, Spat is used
within the world to control how the sounds are heard within
that space, which it does by binaural panning. [5] While Spat
is not open-source, SoundStroll is. Spat implementation will
likely be outside the scope of the research. However, Spat has
a model for binaural panning that is worth emulating and will
add a sense of realism when rebuilt using HOA Library (v2.2)
and what it provides for the 3D audio sequencer. However,
since SoundStroll’s creation in 2014, it has not been updated,
and the creator wants to believe that “it is usable by someone
else than me at this point!” [3]

In 2016, Timo Hoogland created Soularis11, a 3D audio se-
quencer in Max with OpenGL intending to “create soundscapes
in a live performing situation.” [2] It is theme based on the
solar system, and allows for the creation of planets in which
make up the melodies, rhythms, and chords. [2] Concerning
the theme, the center of the solar system is the sun. It works by
giving a pulse on a “certain time interval” [2], which then plays
the planet in a 3D environment. The spatial driver is something
that Hoogland created himself at the time. The system “pans”
the sound based on the angle to the user’s position/view-
direction (time-difference stereophonic), adjusts the volume
based on the distance and lowpass-filtering based on the sound
being in front or behind the user’s view (to simulate the
filtering of the head/ear). Spatialization created for reproducing
and controlling the localization of sound sources, and the
projection of that sound in real or virtual space is a problem
in computer music research. It corresponds to difficulty of
the creation of a 3D audio sequencer, as this helped with the
building of the HOA Library implementation in the 3D audio
sequencer. Additional control inside the world is mapped to a
Sony PlayStation 3 controller. However, Hoogland, has never
used Soularis for a live performance. [2] Currently, there is no
information about saving scenes for performance. In addition,
Hoogland notes that the project is not finished and that he
planned to release the project as an open-source program, but
has not released an update in 3 years. [2]

B. HOA Library

The highest use of HOA Library for sound and musical spa-
tialization occurred between 2012 and 2015. This period was

9https://github.com/vichug/soundstroll
10http://forumnet.ircam.fr/product/spat-en/
11https://www.timohoogland.com/soularis-3d-sound-sequencer/

when the active development was worked on and fostered at the
University of Paris 8. Since 2012, HOA Library has been used
in the framework of musical creation projects in live electronic
composition workshops at the music department of University
of Paris 8 and for several demonstrations. Those demonstra-
tions that have occurred used spatialization tools based on
High Order Ambisonics. Artistically, the research works in two
areas: “the development of new functions of sound and space
manipulation relevant to composition and musical context, and
the adaptation of the spatialization tools to many uses and var-
ious restitution systems such as quadaphonic, or binaural.” [8]
HOA Library (v2.2), which was developed in 2015, “has made
multiple improvements upon previous versions with updates
and new features. Those updates and features include: new
binaural rendering, new tutorials, exchanger for Ambisonics
data format, and optimizations.” [7] HOA Library’s greatest
asset is its use of Ambisonics. It approaches Ambisonics as
the “processing of circular harmonics involving gain operations
that allow simulation of the position of point sources or the
application of transformations across the sound field” [8], such
as reverberation.

Both previous examples, Soularis [2] and SoundStroll [3],
were never used in a performance setting and had great limiting
factors which contributed to their disuse. However, this project
aims to develop an application, a 3D audio sequencer, that
uses HOA Library (v2.2) and Ambisonics to manipulate the
harmonics to use the sound space as an expressive dimension
of music and sonic design that can be used. [8] Moreover, a
more significant limiting factor of this system is the latency of
samples can change depending on spatialization. Nevertheless,
this project aims to develop an application with latency that is
controllable by the performer, as well as not noticeable by the
audience.

III. PROGRAM DESIGN

“SonoSpatial Walk” is a 3D audio sequencer in the form
of a Max Collective, that allows for the creation and editing of
soundscapes in a 3D space for sound and musical recognition.
The collective uses MIDI, Jitter, and HOA Library. It is depen-
dent on nothing but open-source, cross-platform libraries. It is
capable of the creation the soundscapes through using HOA
Library (v2.2) for sound spatialization by getting the values
of the environment from the Jitter and OpenGL matrix that
create the objects, space, and scene by values. Furthermore, I
use MIDI and Java to control reverberation, enable keyboard
control, full-screen, non-movement commands, and navigation
commands. Finally, I test the performance of the system by
measuring the sound spatialization to get the finite impulse
response (FIR) frequency response by using the buffir∼ object
in Max to convolve an input signal with samples from an input
buffer. The overall flow of the data in the application is shown
in Figure 1. You can find the source code of this application
on GitHub12, as well as on my website.13

To start making a proper scene, these patchers must be
opened:

• 1. Graphics (shapes.maxpat),

12https://github.com/JustinKerobo/justinkeroboprojects
13http://justinkerobo.xyz/



Fig. 1. Overview of the flow of data in the collective.

• 2. Sphere Setting Interface (sfcolorsgui.maxpat),

• 3. Sound Spatialization is happening (for example,
HOA soundhost 2.maxpat)

These 3 above-mentioned patchers should be launched on
project load. Within this paper, the presentation modes of the
patchers are shown, but are explained in the context of the full
algorithm.

The spatialization patcher is linked to a specific spa-
tialization tool and configuration: for another speaker setup
or another spatialization engine (for example IRCAM’s
spat), another patcher will be needed. In this distribu-
tion, there are currently only two spatialization patchers
which are working properly, and they are for a binau-
ral headphones setup: HOA soundhost 2.maxpat and IR-
CAMspat soundhost 2.maxpat. The one using HOA is the
default one. IRCAM’s Spat is usable but is not free.

The 3D audio sequencer is based on sound spheres. There
are two spheres, trigger and source spheres. A trigger sphere
is a gridded sphere, much bigger than the source (opaque)
sphere. When a trigger sphere is created, a matching source
sphere is also linked to it. A source and its trigger will always
have the same color. When one enters a trigger sphere, the
matching source will be triggered, and, thus, spatialized and
heard. When one leaves a trigger, the matching source will be
stopped (immediately or not, depending on the trigger mode).
Having those two spheres allows for distant sounds, which
won’t be triggered when the user is near the source, but only
when they are inside the trigger sphere. This allows for more
control in the sounds heard in the soundscape.

A. Graphics using OpenGL and Jitter

The graphics that make the 3D audio sequencer are shown
in Figure 2, or shapes.maxpat. There are numbers within the
Max patch put as labels, in yellow and blue. There are five
number labels in yellow corresponding with functions inside
the 3D world. The first enables graphics in the 3D world
by allowing access to stop the rendering of the world on
command. The second allows for the traversal of the 3D world

with the ability to use the mouse and choose keyboard keys that
map to movement. The third creates the starting plane that is
shown in Figure 3, it also gives it a texture and transparency
so that a user can see through it. The fourth allows for the
control acceleration and speed of navigation, in addition to
the ability to enable navigation commands using keyboard
controls. The fifth allows for the placement and movement
of the sound sources (spheres) within the 3D space. There are
two blue number labels, the first corresponds to the trigger
spheres and its properties within the 3D world, and the second
is the same, but to source spheres. The perception of endless
space is created by the 3D space enclosed by a skybox of six
randomly-colored “walls” created by OpenGL and Jitter. Since
it is a skybox, a user can never get closer to the walls. [1] This
choice in the style of the 3D space was made to allow for an
artist to have an unlimited canvas in which to place sound
sources. The sound sources are figured by spheres of color.
The spheres are also created by Jitter and the OpenGL matrix
format. [1] To each source, there is a trigger related: a trigger
consists of a gridded sphere, that is tied to its sound source
sphere. Each time a user creates a new source, there will be
a related trigger created. The “starting plane” is a beacon to
always find the scene’s origin at a glance. A skybox corner,
spheres, triggers, and starting plane are in Figure 3.

All of these components and functions are connected
together inside shapes.maxpat to allowed for creation of the
3D space, the traversal of the 3D space, the ability to save
and read a scene within that space, and the ability to enable
and use technical and navigation commands. Because of the
Jitter and OpenGL matrix, the rendering of soundscapes are
possible. Another major component that allows for a seamless
user interface is Java and MIDI. Both connect within Max to
allow for the ability to enable and use technical and navigation
commands.

B. Controls and Navigation through Java and MIDI

Jitter is an excellent tool when used with OpenGL to make
objects. In combination with Jitter, Java in shapes.maxpat is
used to map keyboard controls within the 3D space created
by OpenGL and Jitter. Within shapes.maxpat, it maps .json14

files to Jitter by using a user interface mapper within the
OpenGL and Jitter matrix format. To navigate, it works like
a classic, first-person video game-like control scheme. The
mouse is used to look around. The keyboard is used to move.
In shapes.maxpat, the user can toggle between AZERTY and
QWERTY keyboard with MIDI and keyboard controls.

In Figure 2, there is an object in Max that allows for
MIDI to be mapped to control reverberation (Figure 4), enable
keyboard control, fullscreen, non-movement commands, and
navigation commands in the soundscape. The ctlin∼ object in
Max allows the ability to receive the output received MIDI
control values. The object directly outputs the value from a
specific controller number and MIDI channel.

When moving the knob or pressing a pressure pad on
a MIDI controller, the user can see the channel that the
controller is on. The specific knob or pad is the controller
on the MIDI device. When using it, the values change, and

14JSON (JavaScript Object Notation) is a lightweight data-interchange
format.



Fig. 2. Graphics (Presentation Mode): shapes.maxpat

Fig. 3. A skybox corner, spheres, and triggers; plus the starting plane.

those instances are mapped to functions of the 3D audio
sequencer in Max. In the reverb Max patch, or Figure 4, MIDI
is mapped to the size of the room, dampening value, freeze
of reverb, wet and dry audio effects, and the diffusion factor.
This patch is also connected to HOA soundhost 2.maxpat. In
HOA soundhost 2.maxpat it tracks sound information based
on Jitter and OpenGL matrix values, which connect to HOA
Library for sound spatialization. Because reverb is connected
to HOA Library, it can change the values in the 3D space,
making it larger or smaller, and also affecting what tones are
heard.

C. Sphere Setting Interface with Jitter

The creation and placement sound sources (spheres) are
determined by Figure 5, or sfcolorsgui.maxpat. This Max patch
also allows for the saving and reading of scenes that one has
created, along with shapes.maxpat. Other features include the
ability to toggle “loop” or “trigger mode.” The “loop” toggle
allows one to loop one sound (on by default), and “trigger
mode” changes the way it’s triggered. If activated (by default),
then the sound will be read until the end of the sound file when
going out of the trigger sphere. If it’s set on 0, going out of the
trigger sphere will stop the sound as is, without going to the
end of it first. In combination with spheres.maxpat, Java and
MIDI controls are mapped to sfcolorgui.maxpat through the

Fig. 4. Max Patch (Presentation Mode): reverb

3D space. When a new sphere is created in the space, it will
show in the patch. If the user moves away from the sphere,
the sphere should be should be blinking. To stop the blinking
the user needs to give the sphere a custom color. This can be
done through a contextual or mini-menu. Afterwards, a user
can click the colored area to choose a new color. The mini-
menu is the umenu15 object in Max. The umenu object allows
text to be displayed by a pop-up menu. The mini-menu is used
to manage sound files: there are different options to populate
this menu, after what one can choose an available sound to
assign to that sphere. The user may close the contextual menu
by right-clicking anywhere. All spheres settings may also be
changed from the patcher “sfcolorsgui.”

Fig. 5. Sphere Setting Interface (Presentation Mode): sfcolorsgui.maxpat

15https://docs.cycling74.com/max7/maxobject/umenu



Fig. 6. A sound source (left) and its matching trigger sphere (right)

It is possible to move both sound sources and triggers, in
both a linked mode - where the trigger stays centered around
the source - and a not-linked mode - where the user can move
a trigger sphere away from its source. To toggle one mode or
the other, is mapped to keyboard controls. It is also a virtual
button in shapes.maxpat. Users can move a source in linked
mode, and its trigger will immediately position around it, even
if it had been separated previously in not-linked mode. It is
also possible to hide/show all the triggers spheres. Examples
of source and trigger spheres are shown in Figures 6 and 7.

A sphere can also be moved in the space in all directions.
Controls are also mapped to move a sphere towards the user
or away. In linked mode, only source spheres can be moved.
The trigger spheres move with it by default. A user can also
change increase or decrease the size of a trigger sphere.

Fig. 7. Source and trigger apart (left) and trigger still linked around source
(right)

Once a user creates a scene in the 3D audio sequencer that
they would like to use again, one can save it. To save, click
the button labeled “save current scene” in shapes.maxpat or
“save” in sfcolorsgui.maxpat. A save consists of several files:
Four matrix files:

• Contains the color of each sphere/trigger duo (col-
ors.jxf.jit),

• The size of each trigger sphere (scaleoftriggers.jxf.jit),

• For the coordinates of each source sphere
(sources.jxf.jit),

• Gives the position of each trigger sphere (posoftrig-
gers.jxf.jit).

There are also five text files, read by call objects:

• The sounds currently assigned to each source sphere
(currentfiles.txt),

• Contains all the sounds available in this scene (sound-
scoll.txt),

• Remembers the file paths of sound folders
(filepaths.txt),

• Saves the loop state for each sphere (loops.txt),

• Saves the mode state for each sphere (trigmodes.txt).

Saving will create all those files in the selected folder, so one
may want to create a new folder and label it depending on
scene. To open a scene, click “read” (sfcolorsgui.maxpat) or
“read an existing scene” (shapes.maxpat) then select the folder
where all those files are saved. The creation of the ability to
save and read was made like this to retain creativity. By editing
the values within the files, a user can make a soundscape
without even being inside the 3D audio sequencer.

Fig. 8. Sound Spatialization (Presentation Mode): HOA soundhost 2.maxpat

D. Sound Spatialization with HOA Library

The spatial and sound processor was made with HOA Li-
brary, which is shown in HOA soundhost 2.maxpat, or Figure
8. It gets binaural audio and sense of space within the sound



space by tracking information in HOA twosounds.maxpat. It
tracks when it receives sound movement information, when a
sound is triggered, and when it receives a list of sounds while
reading a scene. It uses that information and unpacks it into the
pure data that HOA Library needs to play the sound binaurally.
Within Max, it inputs that data into HOA twosounds.maxpat.
Finally, the data mapped through the 3D map of HOA Library
and gives the sense of a 3D space sonally.

After that, it is put through hoa processing, which allows
it to be played out in the headphones or speakers. The way
that hoa processing allows for that to happen is through a dual
output, and that is processed out directly into the live gain to
be heard for playback.

1) Buffer-Based FIR Filter: Before directly processing the
sound out to live.gain∼, I put it through the buffir∼ object
first. The buffir∼ is used for the finite impulse response (FIR)
filter that convolves an input signal with samples from an
input buffer. [6] In a side Max patch, it can calculate the
filter response of the FIR filter in the main patch for a given
number of samples (coefficients). By using the samples, it
change the contents of the signal. [6] When the input signal is
convolved with samples from an input buffer, the signal travels
horizontally, against the samples. [6] Depending on how many
samples the input signal is convolved by, values are gained and
are known as products. Products are the input signal and the
samples that the buffer is convolved by, multiplied in pairs.
[6] The sum of those products is the output sample, and will
change what is heard inside the 3D audio sequencer.

Fig. 9. FIR Filter: First Convolve

It can also show the normalized frequency, the amplitude of
samples, the magnitude of frequency, phase delay, phase, and
the group delay all in samples as well. The graphs are made
by using the sum of the products, which take information and
produce a finite number of non-zero values, which also changes
the sound in the 3D audio sequencer. [6]

It changes every time a user presses the button and con-
volves the samples with input samples, which indicates that
3D sound spatialization is working. It affects the response
from the filter, as well as the sound heard in the 3D space.
The change is shown in Figures 9 and 10. This was added
for the ability to test the sound spatialization in conjunction

with HOA soundhost 2.maxpat. It registers as a sound being
triggered in HOA soundhost 2.maxpat, and the sound changes
because the input signal is being edited with use of the filter.

Fig. 10. FIR Filter: Second Convolve

IV. CONCLUSION AND FUTURE WORK

The collective performs better in terms musical and sonal
latency (on lower latency systems). This is also shown through
Figures 9 and 10. The normalized frequency of Figure 9
was done on a system that had half of the system memory
committed to the program, or 16GB. The magnitude of the
normalized frequency fluctuated more, which is shown in three
dips that go from -10db (decibels) to -15db to -23db, and
that distorts the sound because of the lack of audio processing
power. The normalized frequency of Figure 10 was done on
a system that had the full system memory committed to the
program, or 32GB. The magnitude of the normalized frequency
in Figure 11 generally stays the same, and only dips to -
10db once. This shows better sonal latency on lower latency
systems, in addition to sound spatialization working. A number
of improvements can still be made for the sample latency
of samples heard when spatialized inside of the spheres and
the improvement of the spatial processor to allow for more
forms of sound spatialization. As previously mentioned with
HOA Library and Ambisonics, version 2.2 made multiple
improvements upon the previous one, but still can improve
in two major ways. The first is the latency and spatialization
algorithm, as there are times where other objects in the
sequencer can be heard with a delay from the reverberation
even after the stoppage by the reverberation, but this usually
occurs on higher-latency systems. The second is that with the
3D adaptations for a space that is not spherical in its design or
a platonic solid16 is hard to get optimal projection in the space.
[8] With the skybox in Jitter that the 3D audio sequencer is
spaced in, the acoustics are difficult to process with binaural
[8], which the collective uses.

Besides HOA Library, another improvement that could be
made in the collective is a completely other spatial processor.
While HOA Library is open-source, IRCAM’s Spat is not, but

16Only five platonic solids (tetrahedron, cube, octahedron, dodecahedron,
icosahedron).



they have more active updates and features that a paid service
provides. With it comes “an efficient signal-processing library”
and over 250 external objects for Max. [5] The last main
improvement that could have been made deals with MIDI.
While the collective uses MIDI in a functional way, it does not
use MIDI for direct musical assignment to the sound sources
within the 3D audio sequencer. In addition, the collective was
compiled and tested under Microsoft Windows 10.0.18362,
but because it is a Max Collective, it is compatible for Mac
computers as well.

In the end, the open-source collective was developed that
allows the user to interact with their sounds in a 3D environ-
ment, and also hear how the spatialization would affect it based
on reverberation values of the room. All things considered, any
sample is playable and assignable to a sound source; one can
compose and playback a scene using this software. Although
HOA Library may no longer be actively developed by the
CICM, the research using the spatial processor for a wide
variety of applications has not ceased. With the emergence
of better software and HRTF17 databases, the idea of a 3D
audio sequencer is closer than ever.

ACKNOWLEDGMENT

The author would like to thank David Barbella, Marc
Benamou, Xunfei Jiang, Charlie Peck, and Forrest Tobey.

REFERENCES

[1] Cycling ’74. Appendix B: The OpenGL Matrix Format.
June 2009. URL: https : / / docs . cycling74 . com / max5 /
tutorials/jit-tut/jitterappendixb.html.

[2] Timo Hoogland. soularis. Jan. 2016. URL: https://www.
timohoogland.com/soularis-3d-sound-sequencer/.

[3] Vic Hug. Tool: SoundStroll. 2014. URL: https://cycling74.
com/tools/soundstroll.

[4] Jean-Marc Jot and Olivier Warusfel. “A Real-Time Spa-
tial Sound Processor for Music and Virtual Reality Ap-
plications”. In: ICMC: International Computer Music
Conference. cote interne IRCAM: Jot95c. Banff, Canada,
Sept. 1995, pp. 294–295. URL: https : / / hal . archives -
ouvertes.fr/hal-01106971.

[5] Jean-Marc Jot and Olivier Warusfel. Spat. 2012. URL:
http://forumnet.ircam.fr/product/spat-en/.

[6] Dan Lavry. “Understanding FIR (Finite Impulse Re-
sponse) Filters-An Intuitive Approach”. In: (1997).

[7] Anne Sedes, Paris Guillot, and Julian Colafrancesco.
High Order Ambisonics Library. 2012. URL: http : / /
hoalibrary.mshparisnord.fr/en.

[8] Anne Sedes, Pierre Guillot, and Elliot Paris. The HOA
library, review and prospects. Sept. 2014. URL: http: / /
speech . di . uoa . gr / ICMC - SMC - 2014 / images / VOL 1 /
0855.pdf.

17Head-related transfer function.


